Gaps in Ocean-Related Knowledge, Products, and Observations

Hans-Peter Plag
Old Dominion University
Norfolk, VA, USA

Hans-Peter Plag
Old Dominion University
Norfolk, VA, USA

The gaps we see depend on what we want to achieve.

Hans-Peter Plag
Old Dominion University
Norfolk, VA, USA

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

The Baseline: Past Climate and Global Change

The Baseline: Past Climate and Global Change

Long-term (centuries to millennia) correlations:

The Baseline: Past Climate and Global Change

"Current State"

"Normal Range" (800,000 years)

"Prognosis"

"Current State"

"Normal Range" (800,000 years)

IPCC Assessment: Very Likely by 2100

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

HUMANITY'S JOURNEY

The Evolution of Key Environmental Factors

10.000 BC

© Tiwah.co

STABILITY

1,900 AD 2,000 AD

HUMANITY'S JOURNEY

The Evolution of Key Environmental Factors

	10,000 YRS		100 YRS	
AIR TEMPERATURE C / century	0.01		1.0	100 X Faster
CARBON DIOXIDE ppm/century	0.2		120	600 X Faster
SEA LEVEL metres/century	0.05	8 22 8	0.2	4 X Faster
POPULATION millon/century	16		5500	350 X Faster
ENERGY CONSUMPTION Terra Watts / century	0.01		16	1600 X Faster
GINI COEFFICIENT /century	0.003		0.3	100 X Faster
10.000 BC © 2015 Tiwah	STABILITY	1,900	AD 2, CHANGE	OOO AD RE UNCERTAINTY

HUMANITY'S JOURNEY

The Evolution of Key Environmental Factors

Holocene: Stability

20th and 21st Century: Change, imbalance

> Future: Uncertainty

BIODIVERSITY

We are heading for a planet without other large mammals - only sapiens left.

We are rapidly reengineering the planet without a clear strategy, a design consideration, a plan BIODIVERSITY We are heading for a planet without other large **EXTINCTION** mammals - only sapiens left. RATE CLIMATE CHANG LOSS OF **ECOLOGICAL FUNCTIONS** quantified) **NOVEL ENTITIES** (Not yet quantified) ND-USE CHANGE "We are the Asteroid" STRATOSPHERIC OZONE DEPLETION FRESHWATER CONSUMPTION **James White PhD** University of Colorado ATMOSPHERIC AEROSOL LOADING (Not yet quantified) **▶**| **♦**) 0:12 / 6:05 **□ □** □ https://www.youtube.com/watch?v=gPq9YAg9mfc&feature=youtu.be We Are The Asteroid OCEAN **PHOSPHORUS** YaleClimateConnections ACIDIFICATION Subscribe 3,584 4,438 views **NITROGEN** Below boundary (safe) In zone of uncertainty (increasing risk) BIOGEOCHEMICAL Beyond zone of uncertainty (high risk) Rockstrom and Klum, 2015

It's not a Greenhouse effect; it's a Poolhouse effect

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

Do we have useful concepts?

Humanity and Earth

"Sustainable Development is a development that meets the needs of the presence while safeguarding Earth's life-support system, on which the welfare of current and future generations depends."

Griggs et al., 2013

Humanity and Earth

"Sustainable Development is a development that meets the needs of the presence while safeguarding Earth's life-support system, on which the welfare of current and future generations depends."

Griggs et al., 2013

Earth: Our Life-Support System

The Ocean is crucial in the life-support system

Humanity and Earth

"Sustainable Development is a development that meets the needs of the presence while safeguarding Earth's life-support system, on which the welfare of current and future generations depends."

Griggs et al., 2013

Earth: Our Life-Support System

The Ocean is crucial in the life-support system

Earth is an "undiagnosed Patient"

"Sustainable Development is a development that meets the needs of the presence while safeguarding Earth's life-support system, on which the welfare of current and future generations depends."

Griggs et al., 2013

Earth: Our Life-Support System

The Ocean is crucial in the life-support system

Earth is an "undiagnosed Patient"

"Sustainable Development is a development that meets the needs of the presence while safeguarding Earth's life-support system, on which the welfare of current and future generations depends."

Griggs et al., 2013

Earth: Our Life-Support System

The Ocean is crucial in the life-support system

Earth is an "undiagnosed Patient"

Everything is about Flows

Flows have accelerated in the last 100 years

ERTY

Each Goal comes with up to 10 Targets

Each Target comes with up to two indicators

We ask questions like:

What can we do to support SDG implementation and monitoring?

Each Goal comes with up to 10 Targets

Each Target comes with up to two indicators

We ask questions like:

What can we do to support SDG implementation and monitoring?

What and who are these Goals?
How can a SDG be successful?

What does a goal need to grow into a successful goal?

Each Goal comes with up to 10 Targets

Each Target comes with up to two indicators

We ask questions like:

What can we do to support SDG implementation and monitoring?

We don't ask:

What and who are these Goals?

How can a SDG be successful?

What does a goal need to grow into a successful goal?

A new Paradigm:

Giving each SDG its own life
Seeing the world through the eyes of a SDG
Realizing, the world is not prepared for the goals

A new Paradigm:
Giving each SDG its own life
Seeing the world through the eyes of a SDG
Realizing, the world is not prepared for the goals

SDG14 CONSERVE AND SUSTAINABLY USE THE OCEANS, SEAS AND MARINE RESOURCES FOR SUSTAINABLE DEVELOPMENT

Stefanie Schmidt Barbara Neumann Yvonne Waweru Carole Durussel Sebastian Unger

Martin Visbeck

Implementing the Ocean SDG in the Wider Caribbean: state of play and possible ways forward

Report prepared for the Partnership for Regional Ocean Governance (IDDRI, IASS, TMG and UNEP)

bv

Lucia Fanning¹ and Robin Mahon²

April 30, 2017

- overfished/declining fish stocks,
- loss of habitat and biodiversity,
- marine and land-based sources of pollution,
- invasive species, primarily lionfish,
- climate change impacts.

The critical issues include:

Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia, Canada

² Centre for Resource Management and Environmental Studies (CERMES), University of the West Indies, Cave Hill Campus, Barbados

Implementing the Ocean SDG in the Wider Caribbean: state of play and possible ways forward

Report prepared for the Partnership for Regional Ocean Governance (IDDRI, IASS, TMG and UNEP)

hv

Lucia Fanning¹ and Robin Mahon²

April 30, 2017

- overfished/declining fish stocks,
- loss of habitat and biodiversity,
- marine and land-based sources of pollution,
- invasive species, primarily licrifish,
- climate change impacts.

Symptoms, not "Issues"/
Causes

The critical issues include:

¹ Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia, Canada

² Centre for Resource Management and Environmental Studies (CERMES), University of the West Indies, Cave Hill Campus, Barbados

4 Interdependencies and interactions of SDGs, Targets and Indicators

with a loan or line of credit.

Better Farming Methods

Jules-Plag and Plag, 2016.
Addressing SDG
Interconnections and
supporting SDG Policy
Development with Agent-Based
Models: The Example of
Gender Equality and
Subsistence Farming

Assessing Interdependencies

Implementing & Monitoring the Sustainable Developments Goals in the Caribbean: The Role of the Ocean January 17-19, 2018 Saint Vincent and the Grenadines

Changes in marine ecosystem

14 LIFE BELOW WATER

Ocean pollution

Ocean acidification

Ocean warming

Changes in ocean circulation

Changes in water cycle

Changes in sea level

Assessing Interdependencies

Feeding a growing Population

Feeding a growing Population

Feeding a growing Population

Accelerating Changing
N and P land use
cycles

Feeding a growing Population

Accelerating energy flow by accelerating C cycle

Accelerating
N and P
cycles

Changing land use

Overload of ocean with nutrients

Hypoxic (dead) zones

Feeding a growing Population

Changing land use

On their quest to learn more about toxic substances produced by cyanobacteria, Dr. Paul Cox and his team discover a link between cyanobacteria and ALS, Alzheimer's, and Parkinson's.

Director: Bo Landlin, 2017

Feeding a growing Population

2 ZERO HUNGER

Accelerating energy flow by accelerating C cycle

Changing land use

Overload of ocean with carbon

On their quest to learn more about toxic substances produced by cyanobacteria, Dr. Paul Cox and his team discover a link between cyanobacteria and ALS, Alzheimer's, and Parkinson's.

Director: Bo Landlin, 2017

Toxins

Feeding a growing Population

2 ZERO HUNGER

Accelerating energy flow by accelerating C cycle

Changing land use

Overload of ocean with nutrients

Overload of ocean with carbon

Extinction

On their quest to learn more about toxic substances produced by cyanobacteria, Dr. Paul Cox and his team discover a link between cyanobacteria and ALS, Alzheimer's, and Parkinson's.

Director: Bo Landlin, 2017

Toxins

Feeding a growing Population

Accelerating energy flow by accelerating C cycle

Changing land use

Overload of ocean with nutrients

Extinction

Overload of ocean with carbon

On their quest to learn more about toxic substances produced by cyanobacteria, Dr. Paul Cox and his team discover a link between cyanobacteria and ALS, Alzheimer's, and Parkinson's.

Gaps in Sustainability-Related Knowledge, Products, and Observations

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

Do we have the helpful concepts?

Gaps in Sustainability-Related Knowledge, Products, and Observations

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

Do we have the helpful concepts?

Do we the knowledge to get to a desired future?

Sustainability Science

Sustainability Science

Foreseeability and Foresight:

- What might happen?
- Possible threats and hazards
- Knowing the system trajectory

System Knowledge

System knowledge
Current state and trends

Sustainability Science

Foreseeability and Foresight:

- What might happen?
- Possible threats and hazards
- Knowing the system trajectory
- What do we want to happen?

System Knowledge

Goal Knowledge

System knowledge
Current state and trends

Goal knowledge desirable future

Foreseeability and Foresight:

- What might happen?
- Possible threats and hazards
- Knowing the system trajectory
- What do we want to happen?
- How can we impact the system trajectory?

System Knowledge

Goal Knowledge

Transformational Knowledge

Foreseeability and Foresight:

- What might happen?
- Possible threats and hazards
- Knowing the system trajectory
- What do we want to happen?
- How can we impact the system trajectory?

System Knowledge

Goal Knowledge

Transformational Knowledge

System knowledge
Current state and trends

Transformation knowledge
Facilitating pathways

Goal knowledge
desirable future

Foreseeability and Foresight:

- What might happen?
- Possible threats and hazards
- Knowing the system trajectory
- What do we want to happen?
- How can we impact the system trajectory?

System Knowledge

Goal Knowledge

Transformational Knowledge

Adaptation Science

Transformation knowledge

Facilitating pathways

Sustainability Science

Goal knowledge desirable future

System knowledge
Current state and trends

Gaps in Sustainability-Related Knowledge, Products, and Observations

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

Do we have the helpful concepts?

Gaps in Sustainability-Related Knowledge, Products, and Observations

The gaps we see depend on what we want to achieve.

Our perception depends on the distance we have ...

Improving the present while liberating the future: requires foresight.

Epistemic gaps lead to a lack of foresight and result in surprises

Do we understand the scale of changes?

Do we have the helpful concepts?

Do we the knowledge to get to a desired future?

How can science & earth observations support the SDGs

Gaps

Knowledge

Discovery

Not having the capacity to use Not knowing how to access Not knowing what is available

Processing

Observation

Experts

Table 1. Synthesis of EVs status

GEO New SBA (+ Climate)	Themes (according to the Bari's Workshop)	EV name	Domain and/or system component	Status of EV discussion (initial, medium, advanced)	Relevant communities, conventions, others initiatives	Other relevant GEO SBAs
Biodiversity and Ecosystem Sustainability	Biodiversity			Advanced	GEOBON, CBD, Ramsar Convention	
		Genetic composition (Co-ancestry, Allelic diversity, Population genetic differentiation, Breed and variety div.)				
		Species populations (Species distribution, Population abundance, Population structure by age/size class)				

Table 1. Synthesis of EVs status

GEO New SBA (+ Climate)	Themes (according to the Bari's Workshop)	EV name	Domain and/or system component	Status of EV discussion (initial, medium, advanced)	Relevant communities, conventions, others initiatives	Other relevant GEO SBAs
Biodiversity and Ecosystem Sustainability	Biodiversity			Advanced	GEOBON, CBD, Ramsar Convention	
		Genetic composition (Co-ancestry, Allelic diversity, Population genetic differentiation, Breed and variety div.)				
		Species populations (Species distribution, Population abundance, Population structure by age/size class)				

Dis ter Resilience	Disasters			Initial	Sendai Framework	
Energy and Mineral Resources Management	Energy			Initial	IRENA, IEA	
		Ocean (fixed and floating offshore wind, wave, tidal, currents, OTEC)	Ocean			Ocean
		Temperature (sea- surface, sub-surface and deep-sea)	Ocean			Biodiversity & Ecosystems, Ocean, Weather
		Bathymetry	Ocean (Renewable energy)			Ocean
		Current (speed, direction)	Ocean (Renewable energy)			Ocean
		Tidal (min, max, sea surface elevation)	Ocean (Renewable energy)			Ocean
		Wave (height, direction, period)	Ocean (Renewable energy)			Ocean
		Wind speed and direction	Ocean (Renewable energy)			Ocean

Table 1. Synthesis of EVs status

Jill agrees with Jill about what is essential

GEO New SBA (+ Climate)	Themes (according to the Bari's Workshop)	EV name	Domain and/or system component	Status of EV discussion (initial, medium, advanced)	Relevant communities, conventions, others initiatives	Other relevant GEO SBAs
Biodiversity and Ecosystem Sustainability	Biodiversity			Advanced	GEOBON, CBD, Ramsar Convention	
		Genetic composition (Co-ancestry, Allelic diversity, Population genetic differentiation, Breed and variety div.)				
		Species populations (Species distribution, Population abundance, Population structure by age/size class)				

Dis ter Resilience	Disasters			Initial	Sendai Framework	
Energy and Mineral Resources Management	Energy			Initial	IRENA, IEA	
		Ocean (fixed and floating offshore wind, wave, tidal, currents, OTEC)	Ocean			Ocean
		Temperature (sea- surface, sub-surface and deep-sea)	Ocean			Biodiversity & Ecosystems Ocean, Weather
		Bathymetry	Ocean (Renewable energy)			Ocean
		Current (speed, direction)	Ocean (Renewable energy)			Ocean
		Tidal (min, max, sea surface elevation)	Ocean (Renewable energy)			Ocean
		Wave (height, direction, period)	Ocean (Renewable energy)			Ocean
		Wind speed and direction	Ocean (Renewable energy)			Ocean

Tiwah Connecting THE Connecting C

SDGs-Related Gaps

- ●SDG-GP-0: There is a lack of an epistemology for the creation of transition knowledge from the current system state and trajectory to the desired future.
- SDG-GP-1: No integrated environmental and socio-economic databases
- ●SDG-GP-2: Insufficient accounting for environmental variables in SDG indicators
- SDG-GP-3: Missing link between SDGs and sustainability
- SDG-GP-4: Missing tools and capacity to assess cross-SDG dependencies
- SDG-GP-5: Missing tools for assessing cross SDG impacts and policies
- SDG-GP-6: Skills required for matching providers and policy makers
- ●SDG-GP-7: Many of the ESDGSVs for the built environment are not measured

Prioritization

A series of dialogue-scenarios, which can be read as poems or plays, describing the "knots" and impasses in various kinds of human relationships.

Governance/Science/Private

Governance/Science/Private

We have a complex/ wicked problem

Governance/Science/Private We have a complex/ wicked problem Jack Jack Jack Jack Match Making

Governance/Science/Private We have a complex/ wicked problem Jack Jack We will help you Jack find partners! Jack Match Making

