Assessing the land resource–food price nexus of the Sustainable Development Goals

Michael Obersteiner,1,*† Brian Walsh,1,*‡ Stefan Frank,1 Petr Havlík,1 Matthew Cantele,1 Junguo Liu,1,2 Amanda Palazzo,1 Mario Herrero,3 Yonglong Lu,4,5 Aline Mosnier,1 Hugo Valin,1 Keywan Riahi,1 Florian Kraxner,1 Steffen Fritz,1 Detlef van Vuuren6,7

Brian Walsh (Research Scholar)
International Institute for Applied Systems Analysis
Ecosystems Services & Management
9 December 2016

www.globiom.org
The fundamental question:

How do we **manage trade-offs** among 17 goals to make progress on the complete agenda?
Tradeoffs

Sustainability is not pursued in a vacuum:

Ambitious conservation policies will lead to food price increases.

The question is how to manage tradeoffs to live within resource budgets.

Ex: 1st generation biofuels
Analysis framework:

- Looking at land system-related SDGs
- Based on the policy process
- Not trying to identify the “best” policy directly
- Can we see tradeoffs using a model like GLOBIOM?
- Can these be independent of scenario construction?
Goals

- Identify thematic clusters of goals
Goals into Policy

- Identify thematic clusters of goals
- Pair each cluster with a range of policy options (global implementation)
Goals into Policy into GLOBIOM

- Identify thematic clusters of goals
- Pair each cluster with a range of policy options

• Construct scenarios from unique combinations of policies
GLOBIOM into indicators

- Planetary boundaries define the solution space for environmental SDGs.

- Fertile soil, stable growing conditions, clean water for drinking and agriculture are foundational to other goals.

- Indicators & benchmarks for many targets.

- Good place to start looking for co-benefits and tradeoffs.
Each scenario is assessed on food prices & environmental outcomes decadally through 2050.
X-axis: environmental “score”
LULUCF emissions, agricultural water use, deforestation, biodiversity loss, fertilizer use

Y-axis: GLOBIOM food price index
Tradeoffs

More ambitious conservation agendas lead generally to higher food prices.
Tradeoffs

• We can use GLOBIOM to see tradeoffs

• Conservation policies included here can increase food prices by up to 20% in 2030

• There is a tradeoff efficiency frontier that limits joint food price—environmental outcomes.

• So the questions become:

 • What are we willing to pay or give up?

 • Can we move the tradeoff frontier?
Co-Benefits

Delayed or ill-considered action can increase the costs of essential conservation measures.

Sustainable Consumption & Production (goal 12) can achieve conservation & reduce food prices.
Co-Benefits

Sustainable Consumption & Production radiate co-benefits and create opportunities to achieve multiple goals.

- Energy storage
- Fertilizer & water efficiency
- Climate-resilient agricultural infrastructure
- Waste & overconsumption reduction
Silos vs. Systems

• Healthy ecosystems are essential to development, but entail trade-offs.

• Conservation measures affect food prices, but delayed action on climate will lead to even deeper food insecurity.

• Sustainable Consumption & Production are key to achieving both environmental and food security targets simultaneously

• www.globiom.org
Alternative Slides
Trade-offs

Sustainability, equity, and inclusivity cannot be pursued independently:

New IIASA research shows that conservation policies lead to food price increases.